CHEM 1143

General Chemistry Lecture

MWF 11:00 A.M. – 11:50 A.M., Room Dillard 178

Instructor: Randal Hallford, Ph.D. Associate Professor of Physical

Chemistry

Office Hrs: Posted online. Phone: 397-4187, randal.hallford@msutexas.edu

Dillard 279

Web Page: Portal.

Textbook: Mandatory: Dickerson, Gray and Height D2L/Portal download

recommended reference text: Openstax 2nd edition textbook

download. Not the "Atoms First" version ACS study guide required.

https://openstax.org/details/chemistry.

mcmillanlearning.com homework service is mandatory. Be certain to enroll under your name used with the MSU Registrar. No nicknames or other aliases. **Supplemental Material:** Library reference materials, Student Solutions Guide download.

Prerequisite: enrollment in Math 1233 (College Algebra) and completion of High School Chemistry or CHEM 1103/1203 (introduction to Chemistry) **Exams**

Examination schedule:

Dickers	on et al chap. 1. Atoms Molecules and Ions 2. Mass and Stoichiometry 3. Gas Laws and Kinetics	Openst: 2 3,4 9	ax chap. (Takehome quiz)
Exam 1			
	8. Quantum theory	6	
	9. Electronic properties	6,7	
	10. Redox	4	
Exam 2			
	11. Lewis Structures and VSEPR	7,8	
	12. MO theory I	7,8	
	13. MO theory II	7,8	
Exam 3			
	14 The Chemical Bond	7	
	15 First Law of Thermodynamics	5	

Final Exam: Comprehensive ACS National exam

*Calculators with large memory capacity, mathematical solution software, and chemistry software are NOT allowed on exams. *The use of such a calculator on an exam constitutes cheating.* (single-line scientific calculators are acceptable). *I may check the memory of any calculator during an exam.* Cell phones may not be used for a calculator.

Cell phones, computers, PDA's and other electronic devices are NOT allowed during class. Cell phones must be OFF during any scheduled class period.

Grading: 3 one-hour exams @ 100 pts each 300 (43.0%)

1 ACS comprehensive final exam @ 200 pts 200 (28.5%) 10 homework sets @20 pts each 200 (28.5%)

total possible 700 points

Grade Mid-Term Report: At the midterm point students who are at risk for earning a D or an F in the course at that point will have a midterm grade issued on the webworld. Midterm grades will NOT be reported to the Registrar or on your transcript, nor will they be calculated in the overall grade. Students receiving this midterm report should immediately seek assistance by scheduling a meeting with the professor.

Grading Gr Scale: A:

Grades will be assigned as follows (unless otherwise noted): **A**: 90-100%; **B**: 80-89%; **C**: 70-79%; **D**: 55-69%; **F**: <55% (of

total points)

Under no circumstances will make-up exams or extra assignments be given. One missed exam may be made up based on the comprehensive final exam (substitute final exam score for the missed exam score) if unavoidable medical circumstances exist.

The evaluation of student material is the domain of the instructor. Standard grading policy is followed without exception. Exam errors may be handled by removing the required points from the exam total, but credited if answered correctly for multiple choice format questions. The class average will be determined by the performance of the class. We will adhere to MSU's standard policy. Refer to the MSU website calendar for the final exam date. Questions about the grading of any assignment should be brought to the instructor within one week after the assignment is returned. Scores are reported after each exam.

Note:

By enrolling in this course, the student expressly grants MSU a "limited right" in all intellectual property created by the student for the purpose of this course. The "limited right" shall include but shall not be limited to the right to reproduce the student's work product in order to verify originality and authenticity, and for educational purposes. All materials associated with this course are copyrighted by MSU, the text publisher and the instructors, and may not be published on social media, websites or other means without the express written permission of MSU, the publishers and the instructors. This includes any recordings made in class.

Drop Policy:

Dropping from the course after the last drop date assigns a grade of **F**. If the lecture is dropped, the lab may also need to be dropped.

Attendance: Attendance to lecture is required. Students are responsible for all

material presented in class and in assigned material. In-class exercises

will not be provided outside of class.1

Studying: It is important to study outside of class on a regular basis; working

problems is the best way to learn chemistry. Required or suggested

problems will be due at the start of class on the due date.

Academic Cheating on any exam, quiz or lab report will be regarded as academic dishonesty and may be subject to a zero or a final course grade of

E Soc coloulator requirements above

F. See calculator requirements above.

General Education Statement: Students in this course must demonstrate their

competency in reading, writing, and fundamental math skills through

satisfactory completion of all assignments.

Americans w/ Disabilities Act Compliance: If any student needs special accommodations, the Office of Disabled Student Services Clark Student Center, room 108 (397-4618), and the instructor will provide a reasonable and fair opportunity to perform in this class. Please inform the Student Service as early as possible.

The MSU Student Handbook covers Academic Honesty under University Policies and Procedures. Academic dishonesty is defined as cheating, collusion, and plagiarism.

- Cheating is (1) the use of any unauthorized assistance, (2) dependence upon the aid of sources beyond those authorized by the Instructor, or (3) acquisition, without permission, of tests or other academic material.
- Plagiarism is the use of another person's published or unpublished work without full and clear acknowledgment.
- Collusion is collaboration with another person in preparing work offered for credit if the faculty member in charge does not authorize that collaboration.

Campus Carry:

Senate Bill 11 passed by the 84th Texas Legislature allows licensed handgun holders to carry concealed handguns on campus, effective August 1, 2016. Areas excluded from concealed carry are appropriately marked, in accordance with state law. For more information regarding campus carry, please refer to the University's webpage at http://mwsu.edu/campus-carry/rules-policies.

¹ Refer to the MSU handbook for University policies about academic honesty and class attendance

Chapter 1	Atoms, Molecules, and Ions 1-1 The Structure of Atoms 2 1-2 Isotopes 4 1-3 Molecules 9 1-4 Forces Between Molecules 12 1-5 Molecules and Moles 15 1-6 Ions 17 Melting Points and Boiling Points of Salts 24 1-7 Ions in Solution 25 1-8 Gaseous Ions 33	1
Chapter 2	Conservation of Mass and Energy 2-1 Atomic Weights, Molecular Weights, and Moles 49 2-2 Chemical Analyses: Percent Composition and Empirical Formulas 49 2-3 Chemical Equations 55 2-4 Calculations of Reaction Yields 58 2-5 Solutions as Chemical Reagents 60 Acid-Base Neutralization 64 Acid-Base Titration 68 2-6 Heats of Reaction: Conservation of Energy 71 Heats of Formation 76 2-7 Conservation Principles 78	46
Chapter 3	Gas Laws and the Kinetic Theory 3-1 Avogadro's Law 95 3-2 The Pressure of a Gas 95 3-3 Boyle's Law Relating Pressure and Volume 97 3-4 Charles' Law Relating Volume and Temperature 102 3-5 The Combined Gas Law 105 Standard Temperature and Pressure 108 Ideality and Nonideality 109 3-6 The Kinetic Molecular Theory of Gases 110 The Phenomenon Of Pressure and Boyle, s Law 112 3-7 Predictions of the Kinetic Molecular Theory 115 Molecular Size 116 Molecular Speeds 118 Dalton, s Law Of Partial Pressures 119 Other Predictions of the Kinetic Molecular Theory 123 3-8 Real Gases and Deviations from the Ideal Gas Law 125 Postscript to Gas Laws and Atomic Theory 136	93

Chapter 7	The Periodic Table 7-1 Early Classification Schemes 258 Dobereiner's Triads 259 Newlands' Lawef Octaves 259 7-2 The Basis for Periodic Classification 261 The Periodic Law 264 7-3 The Modern Periodic Table 266 7-4 Periodicity of Chemical Properties as Illustrated by Binary Hydrides and Oxides 270 Binary Hydrides 270 Binary Oxides 272 Postscript to the Classification of the Elements 276	
Chapter 8	Quantum Theory and Atomic Structure 8-1 Rutherford and the Nuclear Atom 281 8-2 The Quantization of Energy 284 The Ultraviolet Catastrophe 287 The Photoelectric Effect 289 The Spectrum Of the Hydrogen Atom 290 8-3 Bohr's Theory of the Hydrogen Atom 293 Energy Levels of a General One-Electron Atom 299 The Need for a Better Theory 300 8-4 Particles of Light and Waves of Matter 300 8-5 The Uncertainty Principle 306 8-6 Wave Equations 309 Vibrating String 310 Schrodinger Equation 310 8-7 The Hydrogen Atom 312 8-8 Many-Electron Atoms 321	
Chapter 9	Electronic Structure and Atomic Properties 9-1 Buildup of Many-Electron Atoms 332 Relative Energies Of Atomic Orbitals 333 Orbital Configurations and First Ionization Energies 335 Electron Affinities 344 9-2 Types of Bonding 346 Atomic Radii 347 9-3 Electronegativity 349	

Chapter 10	Oxidation-Reduction and Chemical Properties 10-1 Oxidation Numbers 358 Calculating Oxidation Numbers 360 10-2 Oxidation-Reduction Reactions 362 10-3 Balancing Oxidation-Reduction Equations 365 Oxidation-Number Method 365 Ion-Electron (Half-Reaction) Method 366 10-4 Redox Titrations 369			
	10-5 Oxidation and Reduction Potentials 372			
	10-6 Chemical Properties: The s-Orbital Metals 373			
	Group IA. Alkali Metals: Li, Na, K, Rb, and Cs Group IIA. Alkaline Earth Metals: Be, Mg, Ca, Sr, and Ba 375			
	10-7 The Filling of the d Orbitals: Transition Metals 377The Structure if Transition-Metal Ions 378 Oxidation Potentials 378 Chemical Properties of Individual Groups: Sc and Ti Groups 379 The Vanadium Group and the Colors of Ions and Complex Compounds 380 The Chromium Group and the Chromate Ion 381 The Manganese Group and the Permanganate Ion 382 The Iron Triad and the Platinum Metals 383 The Coinage Metals 384 The Chemistry if Photography 385 The Low-Melting Transition Metals 387 10-8 The Filling off Orbitals: Lanthanides and Actinides 387 10-9 The p-Orbital or Representative Elements 388			
Chapter 11	Lewis Structures and the VSEPR Method 11-1 Lewis Structures 400 Multiple Bonds 402 Formal Charges 403 Some Polyatomic Molecules 405 The Ammonium Chloride Molecule 406 Lewis Acids and Bases 407 Bonding to Heavier Atoms 408 Resonance Structures 410 The Meaning if Oxidation Numbers 415 11-2 Acidity of Oxyacids 418 11-3 The VSEPR Method and Molecular Geometry 422 Steric Numbers Greater Than Six 428 Exceptions to the VSEPR Rules 429	399		

Chapter 12	Diatomic Molecules 12-1 Molecular Orbitals 439 Bonding in the H ₂ Molecule 440 The Pauli Buildup Process in Molecules 445 12-2 Diatomic Molecules with One Type of Atom 448 Paramagnetism and Unpaired Electrons 452 Buildup if Diatomic Molecules 453 12-3 Diatomic Molecules with Different Atoms 458 Hydrogen Fluoride and Potassium Chloride 458 Dipole Moments 462 A General AB Type Diatomic Molecule 463
Chapter 13	Polyatomic Molecules 13-1 Localized Molecular Orbitals for BeH 2, BH 3, and CH 4 476 13-2 Hydrogen in Bridge Bonds 481 13-3 Localized-Molecular-Orbital Theory for Molecules with Lone Electron Pairs 483 13-4 Single and Multiple Bonds in Carbon Compounds 488 13-5 Benzene and Delocalized Orbitals 494 13-6 Polar and Nonpolar Polyatomic Molecules 500 13-7 Molecular Spectroscopy 503
Chapter 14 14-5	Bonding in Solids and liquids 14-1 Elemental Molecular Solids 522 14-2 Ionic Solids 528 14-3 Molecular Solids and Liquids 530 Van der Waals Forces 530 Polar Molecules and Hydrogen Bonds 535 Polar Molecules as Solvents 540 14-4 Metals 541 Electronic Bands in Metals 542 Nonmetallic Network Solids 546 Semiconductors 547 14-6 The Framework of the Planet: Silicate Minerals 549 Chain Structures 550 Sheet Structures 552 Three-Dimensional Networks 553
Chapter 15	Energy and Enthalpy in Chemical Systems 15-1 Work, Heat, and Caloric 562 The Cannons of Bavaria 562 Blood, Sweat, and Gears 563 15-2 The First Law of Thermodynamics 566 A Different View ef the First Law 570 State Functions 570 15-3 Energy, Enthalpy, and Heat Capacity 573 15-4 The FiFirst Law and Chemical Reactions 576 15-5 Bond Energies 580 Bond Energy of a C-C Single Bond 580 Tabulation of Bond Energies 582

Postscript: Count Rumford versus the World 594

Student Agreement for CHEMISTRY 1143

- 1) I have in my possession a copy of the course syllabus that outlines my obligations for remaining enrolled in this course. I am aware that missing three (3) class periods without an acceptable excuse will result in my being dropped from this course. Missing more than three class periods for any reason requires permission from the Dean of Students office.
- 2) Further, I realize that my grade for this course includes homework assignments. Failing to complete the homework will result in a low grade, and so I agree to work homework sets throughout the semester to maintain my overall grade in the course.
- 3) Midterm examinations are a part of my overall grade and I agree to be present for each exam, or to have arranged with the Professor to take them early if I am required to miss class during an examination period due to any acceptable MSU obligations.

Signature of student:	 	
Printed name of Student: -		

Student Agreement for CHEMISTRY 1143

- 1) I have in my possession a copy of the course syllabus that outlines my obligations for remaining enrolled in this course. I am aware that missing three (3) class periods without an acceptable excuse will result in my being dropped from this course. Missing more than three class periods for any reason requires permission from the Dean of Students office.
- 2) Further, I realize that my grade for this course includes homework assignments. Failing to complete the homework will result in a low grade, and so I agree to work homework sets throughout the semester to maintain my overall grade in the course.
- 3) Midterm examinations are a part of my overall grade and I agree to be present for each exam, or to have arranged with the Professor to take them early if I am required to miss class during an examination period due to any acceptable MSU obligations.

Signature of student: _		 	
Printed name of Studen	nt:		