
4143 Programming Language Concepts

General Course Info

Days: TTh 9:30 q.m. - 10:50 a.m.

Location: BO 320

Semester: Monday August 28nd - Friday December 8th

Holidays:

Labor Day Monday September 4th

Thanksgiving Wednesday November 22nd - Sunday November 26th

Last Day for “W”: Monday October 30th

Last Day of Class: Friday December 8th

Final Exam: Tuesday December 12th from 8:00 pm - 10:30 pm

Office Hours

Broad Topics

Names, Binding, and Scope (Declarations)

How do we give names to entities? And when we encounter a name, how do we know which

entity it refers to?

Evaluation (Expressions)

How do we express computations, using values and operators?

Execution (Control Flow)

How to we organize computation in time? What actions or effects can we produce?

Types

How do we classify values so that they may behave in certain, predictable ways?

Functional Abstraction (Subroutines and Coroutines)

How can we abstract computations into chunks so that we can invoke them whenever we

need them?

Data Abstraction (Objects and Modules)

How do we make little bundles of data together with behavior?

Concurrency

How do we arrange to do different computations at the “same” time (safely)?

Metaprogramming

https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2224.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2224.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2224.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2224.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/finalexamschedulespringfall2023.pdf
https://imgbox.com/9i30YeA1
https://imgbox.com/9i30YeA1

How can our programs know about themselves? How can we answer questions about the

code itself?

Semester Schedule

Weeks Description

1-2 Introduction and Names, Binding, and Scope

▢ Introduction to programming languages and their importance

▢ Syntax vs semantics

▢ Compilation vs interpretation

▢ Names, identifiers, and keywords

▢ Binding time: static, dynamic, early, and late binding

▢ Scope: lexical vs dynamic scoping

▢ Nested scopes and scope rules

▢ Static and dynamic scoping examples

3-4 Evaluation (Expressions) and Execution (Control Flow)

▢ Expressions and their evaluation

▢ Precedence and associativity

▢ Order of evaluation

▢ Short-circuiting and its effects

▢ Control structures: sequencing, selection, iteration

▢ Conditionals: if, if-else, switch

▢ Loops: while, for, foreach

▢ Control flow pitfalls and examples

5-6 Types

▢ Data types and their significance

▢ Static typing vs dynamic typing

▢ Strong typing vs weak typing

▢ Type checking and type inference

▢ Primitive types: integers, floating-point, booleans, characters

▢ Composite types: arrays, records, tuples

▢ Type compatibility and type coercion

7-8 Functional Abstraction (Subroutines and Coroutines)

Weeks Description

▢ Introduction to subroutines and functions

▢ Function declaration, parameters, and return values

▢ Call stack and activation records

▢ Recursion and tail recursion

▢ Higher-order functions and function composition

▢ Introduction to coroutines and cooperative multitasking

▢ Coroutines vs threads

▢ Coroutine synchronization and communication

9-10 Data Abstraction (Objects and Modules)

▢ Introduction to data abstraction

▢ Object-oriented programming principles

▢ Classes, objects, methods, and attributes

▢ Inheritance and polymorphism

▢ Encapsulation and information hiding

▢ Introduction to modules and modularity

▢ Module interfaces and implementations

▢ Packaging, namespaces, and access control

11-12 Concurrency

▢ Introduction to concurrency and parallelism

▢ Threads vs processes

▢ Thread synchronization and coordination

▢ Race conditions and critical sections

▢ Mutual exclusion and semaphores

▢ Deadlocks and livelocks

▢ Parallel programming models

▢ Concurrent programming pitfalls

13-14 Metaprogramming

▢ Introduction to metaprogramming

▢ Macros and code generation

▢ Reflection and introspection

Weeks Description

▢ Compile-time vs runtime metaprogramming

▢ Template-based metaprogramming

▢ Aspect-oriented programming

▢ Language-integrated query

▢ Examples of metaprogramming in various languages

15 Review and Future Trend

▢ Recap of key concepts from the course

▢ Discuss emerging programming language trends

▢ Domain-specific languages (DSLs)

▢ Metaprogramming and code generation advancements

▢ Language support for parallelism and distributed systems

▢ Language design challenges and opportunities

Adventures in GoLang

Introduction to Go

Introduction to Go programming language

Setting up the Go development environment

Go syntax and basic program structure

Variables, data types, and basic operations

Control flow statements (if/else, loops)

Functions and packages in Go

Data Types and Structures

Complex data types (arrays, slices, maps, structs)

Working with strings and characters

Pointers and memory management

Error handling in Go

File I/O operations

Concurrency and Goroutines

Understanding concurrency in Go

Goroutines and channels

Synchronization and data sharing

Patterns for concurrent programming

Error handling in concurrent programs

Object-Oriented Programming in Go

Structs and methods in Go

Encapsulation and data hiding

Inheritance and composition

Polymorphism and interfaces

Object-oriented design principles in Go

Error Handling and Testing

Error handling best practices in Go

Panic and recover mechanisms

Unit testing in Go (using the testing package)

Writing testable code in Go

Code coverage and test automation

Advanced Topics in Go

Reflection and runtime type information

Concurrency patterns (e.g., worker pools, fan-out/fan-in)

Memory optimization and profiling

Benchmarking and performance tuning

Working with external libraries and APIs

Web Development with Go

Overview of web development in Go

HTTP server programming in Go

Routing and handling requests

Middleware and authentication

Introduction to web frameworks (e.g., Gin, Echo)

Final Projects and Wrap-up

Student final projects: Implement a significant Go application

Project presentations and feedback

Recap and review of course concepts

Q&A session and open discussion

Grading

Will be based on number of problems solved. Full credit for on time solutions. Half credit for late

submissions. Some credit for accepted solutions with issues (e.g. presentation errors),

Categories Portion of Course ::: Letter Grade Grade Range

Exams 45% ::: A 90-100

Github 10% ::: B 80-89

Participation 5% ::: C 70-79

Presentation 10% ::: D 60-69

Categories Portion of Course ::: Letter Grade Grade Range

Project 10% ::: F below 60

Final 20% :::

:::

Teaching Philosophy

I approach each course with the mindset that every class has a different set of students and not every

lecture or list of topics should be given in a "lock step" manner tied to a calendar. I try and incorporate

current industry topics, student questions, and student interests into my everyday lectures. I will always

cover the core content of the course, but it just may not be in the same order, or using the same canned

examples for each topic every time. A single question may send our lectures off on a path not previously

planned.

I call this my "problem based approach" to teaching. Usually a question is dealing with a specific

problem, so I tailor my lectures to incorporate topics necessary to solve the problem. It also means topics

do not get delivered in the same order every semester. Of course, I guide the solution we use to keep in

line with content commensurate with overall course objectives.

This method of content delivery is not for everyone. But based on the vast majority of course evaluations

most students do enjoy my lecture style and content delivery. Having said this, I know my methods are

not perfect and not every student responds positively. To alleviate distress for those students I create

study guides for each exam. This way no matter what order content is delivered, they have a concrete list

of topics whereby the exam is a subset of those topics. In fact, I give the students more than just a list of

topics to study, I also provide example exam questions to that can be answered as part of the study

process.

How to Succeed

I encourage every student to firstly just go to class! Beyond that, attempt to participate in class

discussions and also ask questions in class. Believe me, classes that have many student questions with a

subsequent discussion, seem do much better in understand a topic as a class.

More importantly you should interact with your fellow students outside of class as well. Start a study

group, post links on Slack, ask questions on Slack! Stay involved with your classmates. Also, if you see

posts on slack, respond to these posts either with a text response or an emoticon reaction to the post. No

one likes to post something, and then feel as no one has read it.

If you need help in understanding a topic, you need to message me immediately so I can either text you a

response, or zoom with you to get things cleared up. And yes I will zoom late into the evening if that is

necessary. I'm not saying I'm at your beckon call, but I try to make myself very available.

Lastly, this isn't totally about your own success, but it helps me succeed. Asking me questions with direct

message or on the course channel is a huge help! I can turn that question into (what the military calls) an

"overhead correction", meaning I can clarify something to the entire class. It does not mean I will use your

name (unless you publicly post it, then that is on you), but it does give me the opportunity to clarify

things to the entire class, since most questions tend to be what the majority of students in the class are

thinking.

My View on Cheating / Plagiarism

Most plagiarizing, when it comes to programming, happens for two reasons:

1. You don't have a clue how to solve the problem, so you get a friend or the internet to

help.

This can be ok, if you cite your resource, and only find small snippets of code to work into

your own solution.

2. You didn't start early enough, and you're desperate to get something working the night

before it's due, so you get a friend or the internet to help.

This is never ok.

Both are easy to fix.

1. Come ask me to explain. I promise you're not the only one who is confused.

2. Start early. Then when you get stuck, you can ask for help the right way!

Presentations

Presentations are a major component of your course work. The ability to discuss complex topics in

front a group of your peers is an important skill to have.

Depending on the course, and the size of the class, you may have many presentations, or just one

presentation.

The quality of a presentations that accompanies a programming project is highly coupled with the

quality of your project. A poor project makes it hard to give a proper presentation on a project in

which you did not complete.

On the other hand, an excellent project doesn't ensure a great presentation either.

Preparation is key, and I am ALWAYS available for help with presentations.

I will give specific requirements for each presentation since each project may vary greatly, but in

general project presentations in my course should follow a basic outline:

Project description (if necessary)

A logical progression of your steps in implementing the project. Make sure to include:

Pitfalls (any confusing components that gave problems)

Highlights (any good solutions or components you are proud of)

Summarize the results or final product whether it be the completed features of the

project or the results of any data you processed.

Be prepared! Sometimes showing your project seems easy since you spent many hours writing it

and have a very deep understanding of it, but this does not translate to a good presentation.

A good presentation is well thought out and practiced.

Side Notes:

A well thought out presentation allows you to hide flaws or unfortunate "features" that you

may not want anyone to know about.

I am also much less inclined to ask pointed questions if you have a well thought out and

thorough presentation.

Miscellaneous

Some of these points are duplicated in other places in this document. It's ok.

All students need a Github account

All programs need to be turned in and running to pass the course

General Assignment Rules:

Due dates and times are as listed on assignment and can change with prior notice to class, and

always in your favor (aka more time).

Formatting of programs is important, and will be graded accordingly.

You name is required on ALL documents uploaded or turned in. A handwritten name is not

acceptable.

For any assignment, you will create a folder and include all documents created by you within this

folder for submission. This includes programs, input / output files, readme's, documentation, etc.

This folder will subsequently be uploaded to Github in the repo you created for the course.

Attending class is one of the primary keys to doing well in this class. Students may be dropped for

excessive absences. There is no distinction made between excused and unexcused.

Make-up exams are not given. If I see fit, then I will replace a missed exam with your final exam test

grade (but this is optional to instructor based on circumstances, attendance, participation, etc.).

Late work will be accepted on a case by case basis. Late penalty is 15 points (out of 100) for initial

lateness and 1 half a letter grade (5 points) for every class period until the total reduced is 50 (half

credit). Extremely late work is totally at the instructors discretion on whether it will be accepted or

not.

Programs containing syntax errors are unacceptable and will be returned without grading (your

programs must work).

Periodically homework assignments will be taken up and graded. It is the student's responsibility to

keep up with assignments and to ask questions over the assigned work, even if absent. All

homework assignments are due at the specified time that may or may not be in conjunction with a

class day. All assignments / homeworks will be uploaded via Github.

Official Course and Department Policies

Attendance Policy

Although student attendance is not calculated into the grade, attendance will be taken each day to track

students. If a student is absent more than 2 classes without an excuse and is not performing well in class,

a report can be submitted to the Dean of Students and the student may be dropped from the class.

Classes will not be streamed for absent students, whether it is excused or not.

Behavior in the classroom

Students are to assist in maintaining a classroom environment that is conducive to learning. This means

that the presence of electronic devices other than your calculator are not to be seen, heard, or implied,

ever. Questions are encouraged and discussion is acceptable, provided it is pertinent and does not

distract from the lesson.

Make Up Work/Exams/Quizzes:

For planned excused absences: Exam may be taken early by prior arrangement.

http://github.com/

For unplanned documented absences: I may replace your exam grade with your final exam grade. I

reserve the right to make that decision.

For unplanned undocumented absences: Zero on the exam

Late Work

Late programs will be accepted with an initial 15 point reduction and then a **5 point **deduction class

day. No late programs for last programming assignment. No late homework will be allowed in the

Connect System.

Computer Requirements: Taking this class requires you to have access to a computer (with Internet

access) to access online course material. Personal computer technical difficulties will not be

considered a reason for extra time to submit assignments, tests, or online discussion postings.

Computers are available on campus in various areas of the buildings, as well as the in the library. Contact

your instructor immediately upon having computer trouble. If you have technical difficulties in the course,

there is also a student helpdesk available to you. The university cannot work directly on student

computers due to both liability and resource limitations, however they are able to help you get connected

to our online services. For help, log into **D2L.**

Policy on Testing Process

The Department of Computer Science has adopted the following policy related to testing.

All bags, purses, electronics (turned off), books, etc. will be placed in the front of the room during

exams, or in an area designated by the instructor.

Unless otherwise announced by the instructor, nothing is allowed on the desk but pen/pencil/eraser

and test papers.

A student who leaves the room during an exam must turn in the test and will not be allowed to

return.

Policy on Programs

Tests will have questions covering out-of-class assignments. Know the material!

Students will be invited to orally answer questions regarding their assignments in my office and

failure to answer those questions correctly will result in deductions from their grades. (Every

student can expect to be invited 1-2 times during the semester to answer questions.)

Computer Science Tutoring

Tutoring is available in Bolin Room 119 & the Office of Tutoring and Academic Support Programs

(TASP) in Moffett Library. A tutor may assist with programs and homework for computer science classes.

The tutor will not do your work.

Academic Misconduct Policy & Procedures

Cheating, collusion, and plagiarism (the act of using source material of other persons, either published or

unpublished, without following the accepted techniques of crediting, or the submission for credit of work

not the individual’s to whom credit is given). The Department of Computer Science has adopted the

following policy related to cheating (academic misconduct). The policy will be applied to all instances of

https://d2l.msutexas.edu/

cheating on assignments and exams as determined by the instructor of the course. (See below for link to

MSU definitions.)**

1st instance of cheating in a course: The student will be assigned a non-replaceable grade of zero

for the assignment, project or exam. If the final grade in the course, does not result in a one letter

grade reduction, the student will receive a one letter grade reduction in course.

2nd instance of cheating in a course: The student will receive a grade of F in course & immediately

be removed from course.

All instances of cheating will be reported to the Department Chair and, in the case of graduate

students, to the Department Graduate Coordinator.

Note: Letting a student look at your work is collusion and is academic misconduct!

See Also: MSU Student Handbook: Appendix E: Academic Misconduct Policy & Procedures

https://msutexas.edu/student-life/_assets/files/handbook.pdf.

Recording of Class Lectures

Permission must be requested in writing and obtained from the instructor before recording of class

lectures. If permission is granted, the recording may only be used by the student making the recording.

Recordings (or any class materials) may NOT be posted on any internet source without written

permission of the instructor. Failure to adhere to the policy may result in removal from the course with a

grade of F or other appropriate punishment.

University Policies and Procedures

Student with Disabilities

Any student who, because of a disability, may require special arrangements in order to meet the course

requirements should contact the instructor as soon as possible. Students should present appropriate

verification from Disability Support Office during the instructor’s office hours. Please note instructors are

not allowed to provide classroom accommodations to a student until appropriate verification has been

provided. For additional information, contact the Disability Support Office in Clark Student Center 168 -

Phone: (940) 397-4140

Policy on Concealed Handguns on Campus

Senate Bill 11 passed by the 84th Texas Legislature allows licensed handgun holders to carry concealed

handguns on campus, effective August 1, 2016. Please note, open carry of handguns, whether licensed or

not, and the carrying of all other firearms, whether open or concealed, are prohibited on campus. Areas

excluded from concealed carry are appropriately marked, in accordance with state law. For more

information regarding campus carry, please refer to the University’s webpage at MSU Campus Carry

Policy *https://msutexas.edu/campus-carry/rules-policies### *. If you have questions or concerns, please

contact MSU Chief of Police Steven Callarman at Steven.callarman@msutexas.edu.

Midterm Progress Report

In order to help students keep track of their progress toward course objectives, the instructor for this

class will provide a Midterm Progress Report for all students in the course through each student’s MSU

Portal account. Midterm grades will not be reported on the students’ transcript; nor will they be

https://msutexas.edu/student-life/_assets/files/handbook.pdf
https://msutexas.edu/campus-carry/rules-policies
https://msutexas.edu/campus-carry/rules-policies
mailto:steven.callarman@msutexas.edu

calculated in the cumulative GPA. They simply give students an idea of where they stand at the midpoint

of the semester. Students earning below a C at the midway point should a) schedule a meeting with the

professor and b) Seek out tutoring.

Important Dates

Visit MSU’s Registrars website Important Dates

https://msutexas.edu/registrar/_assets/files/pdfs/fall23front.pdf

https://msutexas.edu/registrar/_assets/files/pdfs/fall23front.pdf.
https://msutexas.edu/registrar/_assets/files/pdfs/fall19front.pdf

