MIDWESTERN STATE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CMPS 3023: Logic Design Spring semester 2024

Instructor: Dr. Nelson L. Passos Office: Pierce Hall 145 397-4129 Office phone: E-mail: nelson.passos@msutexas.edu Office Hours: 9:00 - 11:30 am MW TR 9:30 - 11:30 am Т 2:00 - 4:00 pm Class Hours: MWF 8:00 am - PY 103

Course Description:

Study of topics related to the design of modern microprocessors, including Boolean algebra, logic gates, design simplification techniques, memory design, programmable control units, and use of hardware description languages.

Prerequisites:

Minimum grade of C in CMPS 2084

Recommended published books:

Digital Design and Computer Architecture, by David Harris and Sarah Harris or Digital Logic and Microprocessor Design with Interfacing, by Enoch Hwang, 2nd ed.

Grading:		
Tests and Final Exam	20 % (each)	
Homework Assignments	20 %	
Project	15 %	
Class Participation	5 %	
Final grading letter:		
00 to 100 pto 1 00 to 90 00	nta D 70 ta 70 00 nta C 60 ta 60 00 nta	

90 to 100 pts = A, 80 to 89.99 pts = B, 70 to 79.99 pts = C, 60 to 69.99 pts = D, other = F

Additional and important information:

All students should refer to the current MSU Students Handbook and Activities Calendar for university policies related to class attendance, academic dishonesty, students responsibilities, rights and activities. **Disability needs:** Inform the instructor if you are a student with a disability and need accommodations for this class.

<u>Cell phones, etc.</u>: Use of any electronic device is not allowed in the classroom. Exceptions must be approved by the instructor.

<u>Attendance</u>: Students are expected to attend all meetings of the classes in which they are enrolled. Attendance is rewarded by the participation points in the grading criteria. If a student is absent more than 3 classes without a documented excuse and is not performing well in class, a report will be submitted to the Dean of Students and the student may be dropped from the class. Classes will not be streamed for absent students, whether it is excused or not.

<u>Assignments</u>: Assignments will be made as scheduled and are expected to be completed by the specified due date. Grades will be given to the assignments handed in on time. Late assignments will be accepted until one class past the due date (except for online assignments), however will have their maximum grade reduced by twenty points. Any assignment turned in after that period or not done will be graded zero points. Students in this course must demonstrate their competency in fundamentals math skills through assignments and tests.

<u>Student drops</u>: If you wish to drop this course you must first contact your instructor. All studentsinitiated drops must be processed by **March 25, 2024.**

Assistance: Please contact your instructor for extra help during this course. This includes class material clarification, expected absences from class due to any personal problem, etc.

Testing Process: The Department of Computer Science has adopted the following policy related to testing:

- All bags, purses, electronics (turned off), books, etc. will be placed in the front of the room during exams, or in an area designated by the instructor.
- Unless otherwise announced by the instructor, nothing is allowed on the desk but pen/pencil/eraser and test papers.
- No student is allowed to leave the room during an exam and return

<u>Midterm Progress Report:</u> In order to help students keep track of their progress toward course objectives, the instructor for this class will provide a Midterm Progress Report through each student's WebWorld account. Midterm grades will not be reported on the students' transcript; nor will they be calculated in the cumulative GPA. They simply give students an idea of where they stand r. Students earning below a C at the midway point should schedule a meeting with their instructor.

Recording Of Class Lectures: Permission must be requested in writing & obtained from the instructor before recording of class lectures. If permission is granted, the recording may only be used by the student making the recording. Recordings may NOT be posted on any internet source without written permission of the instructor. Failure to adhere to the policy may result in removal from the course with a grade of F or other appropriate punishment.

Policy on Concealed Handguns on Campus: Senate Bill 11 passed by the 84th Texas Legislature allows licensed handgun holders to carry concealed handguns on campus, effective August 1, 2016. Areas excluded from concealed carry are appropriately marked, in accordance with state law. For more information regarding campus carry, please refer to the University's webpage on Campus Carry at https://msutexas.edu/police/policies-laws/index.php. If you have questions or concerns, please contact MSU Chief of Police at steven.callarman@msutexas.edu

<u>Active Shooter:</u> The safety and security of our campus is the responsibility of everyone in our community. Each of us has an obligation to be prepared to appropriately respond to threats to our campus, such as an active aggressor. Please review the information provided by MSU Police Department regarding the options and strategies we can all use to stay safe during difficult situations. For more information, visit Safety / Emergency Procedures. Students are encouraged to watch the video entitled "Run. Hide. Fight." which may be electronically accessed via the University police department's webpage.

Academic Misconduct Policy & Procedures:

Academic misconduct is cheating, collusion, and plagiarism: it is the act of using either published or unpublished source material of other students, persons, or generative AI (unless there are instructions that allow it), and must follow accepted techniques of crediting. The Department of Computer Science has adopted the following policy related to academic misconduct. The policy will be applied to all submission of work for credit as determined by the instructor of the course, e.g., assignments, quizzes and exams. (See below for link to MSU definitions.)

- 1st instance of cheating in the program: The student will be assigned a non-replaceable grade of zero for the assignment, project or exam. If the final grade in the course, does not result in a one letter grade reduction, the student will receive a one letter grade reduction in course.
- Further instances of cheating in any course within the program: The student will receive a grade of F in the course & be removed from the course.
- All instances of cheating will be reported to the Department Chair, the MCOSME Dean, the Dean
 of Graduate Students, if a graduate student, and the Office of Rights and Responsibilities, who
 may decide at their own discretion to impose a stiffer sanction based on knowledge of other
 instances of cheating at MSU Texas.

Note: Letting a student look at your work is collusion and is academic misconduct!

See Also: MSU Student Handbook: Appendix E: Academic Misconduct Policy & Procedures https://msutexas.edu/student-life/_assets/files/handbook.pdf.

The MCOSME website provides information on the process for grade appeals or appeals of academic honesty sanctions. The Grade Appeal Checklist provides the timeline for appealing from the instructor to the next in line (dean of the college). The Academic Honesty Checklist describes the timeline for appealing from the instructor to the next in line (chair of department).

Grading system will be discussed in class.

Tentative agenda:

•

Jan	15-	Martin Luther King Holiday
Jan	17-	Introduction
Jan	19-	Binary numbers and data representation - a review
Jan	22-	Binary numbers – negative values
Jan	24-	Fractions
Jan	26-	Floating point
Jan	29-	Logic gates
Jan	31-	Logic levels - transistors
Feb	2-	Switching functions (AND, OR, NOT, NAND, NOR)
Feb	5-	Power consumption
Feb	7-	Boolean algebra
Feb	9-	Boolean algebra – properties/theorems Homework Assignment # 1
Feb	12-	Boolean algebra – De Morgan's law
Feb	14-	Logic to gates – don't cares
Feb	16-	Karnaugh maps - introduction
		Homework Assignment # 2
Feb	19-	Sum of products/product of sums
Feb	21-	Karnaugh maps - examples
Feb	23-	More Karnaugh maps - examples
Feb	26-	Don't cares
Feb	28-	5 input Karnaugh map
Mar	1-	Test #1
Mar	4-	Quine-McCluskey method
Mar	6-	Multiplexers, Decoders
Mar	8-	Introduction to Quartus VHDL - basics
		Homework Assignment # 3
Mar	11-15	Spring Break
Mar	18-	VHDL - examples
Mar	20-	VHDL - Quartus
Mar	22-	Timing - Glitches
Mar	25-	Project example
Mar	27-	Sequential circuits - latches
Mar	29-	Easter Holiday
Apr	1-	Sequential circuits - latches
Apr	3-	D Flip-flops
Apr	5-	VHDL - registers
		Homework Assignment # 4
Apr	8-	Project example - register
Apr	10-	Sequential logic design
Apr	12-	Finite state machine
		Homework Assignment # 5
Apr	15-	Finite state machine implementation – traffic light
Apr	17-	Mealy and Moore Finite state machines
Apr	19-	Simplifying a finite state machine
Apr	22-	Digital building blocks
Apr	24-	Adders, Subtractors
Apr	26-	Comparators - ALU
Apr	29-	Snift registers, Counters
Мау	1-	lest # 2
May	3-	
мау	8-	Finals (Wednesday, 8:00 am)