MIDWESTERN STATE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CMPS 3023: Logic Design Spring semester 2023

Instructor Dr. Nelson L. Passos Office **Bolin Science Hall 126B** Office phone: 397-4129 E-mail: nelson.passos@msutexas.edu Webpage: cs.msutexas.edu/~passos Office Hours: T 2:00 - 4:00 pm 9:30 - 11:30 am TR MW 9:00 - 12:00 noon Class Hours: MWF 8:00 - BO 320

Course Description:

Study of topics related to the design of modern microprocessors, including Boolean algebra, logic gates, design simplification techniques, memory design, programmable control units, and use of hardware description languages.

Prerequisites:

Minimum grade of C in CMPS 2084

Extra Credit online Text book:

- 1. Sign in or create an account at learn.zybooks.com (or get it from bookstore)
- 2. Enter zyBook code MWSUCMPS3023PassosSpring2023
- 3. Subscribe.

Recommended published books:

Digital Design and Computer Architecture, by David Harris and Sarah Harris or Digital Logic and Microprocessor Design with Interfacing, by Enoch Hwang, 2nd ed.

Grading:

Tests and Final Exam	20 % (each)
Homework Assignments	20 %
Project	15 %
Class Participation	5 %

Final grading letter:

90 to 100 pts = A, 80 to 89.99 pts = B, 70 to 79.99 pts = C, 60 to 69.99 pts = D, other = F

Additional and important information:

All students should refer to the current MSU Students Handbook and Activities Calendar for university policies related to class attendance, academic dishonesty, students responsibilities, rights and activities. **Disability needs:** Inform the instructor if you are a student with a disability and need accommodations for this class.

<u>Cell phones, etc.</u>: Use of any electronic device is not allowed in the classroom. Exceptions must be approved by the instructor.

<u>Student drops</u>: If you wish to drop this course you must first contact your instructor. All students-initiated drops must be processed by **March 27, 2023**.

<u>Attendance</u>: Students are expected to attend all meetings of the classes in which they are enrolled. Attendance is rewarded by the participation points in the grading criteria.

<u>Campus Carry</u>: Senate Bill 11 passed by the 84th Texas Legislature allows licensed handgun holders to carry concealed handguns on campus, effective August 1, 2016. Areas excluded from concealed carry are appropriately marked, in accordance with state law. For more information regarding campus carry, please refer to the University's webpage on Campus Carry at https://msutexas.edu/police/policies-laws/ index.php. If you have questions or concerns, please contact Interim MSU Chief of Police at steven.callarman@msutexas.edu.

Active Shooter: The safety and security of our campus is the responsibility of everyone in our community. Each of us has an obligation to be prepared to appropriately respond to threats to our campus, such as an active aggressor. Please review the information provided by MSU Police Department regarding the options and strategies we can all use to stay safe during difficult situations. For more information, visit <u>Safety / Emergency Procedures</u>. Students are encouraged to watch the video entitled *"Run. Hide. Fight."* which may be electronically accessed via the University police department's webpage: *"Run. Hide. Fight."*

Assignments: Assignments will be made as scheduled and are expected to be completed by the specified due date. Grades will be given to the assignments handed in on time. Late assignments will be accepted until one class past the due date, however will have their maximum grade reduced by twenty points. Any assignment turned in after that period or not done will be graded zero points. Students in this course must demonstrate their competency in fundamentals math skills through homework assignments and tests.

<u>Assistance</u>: Please contact your instructor for extra help during this course. This includes class material clarification, expected absences from class due to any personal problem, etc.

<u>Academic Honesty:</u> The Department of Computer Science had adopted the following policy related to cheating (academic misconduct). The policy will be applied to all instances of cheating on assignments and exams as determined by the instructor of the course.

- 1st instance of cheating in a course: The student will be assigned a non-replaceable grade of zero for the assignment, project or exam. In addition, the student will receive a one-letter grade reduction in course.
- 2nd instance of cheating in a course: The student will receive a grade of F in course & immediately be removed from course.

All instances of cheating will be reported to the Department Chair and, in the case of graduate students, to the Department Graduate Coordinator. The MCOSME website provides information on the process for grade appeals or appeals of academic honesty sanctions. The Grade Appeal Checklist provides the timeline for appealing from the instructor to the next in line (dean of the college). The Academic Honesty Checklist describes the timeline for appealing from the instructor to the next in line (chair of department). **Testing Process:** The Department of Computer Science has adopted the following policy related to testing:

- All bags, purses, electronics (turned off), books, etc. will be placed in the front of the room during exams, or in an area designated by the instructor.
- Unless otherwise announced by the instructor, nothing is allowed on the desk but pen/pencil/eraser and test papers.
- No student is allowed to leave the room during an exam and return

<u>Midterm Progress Report:</u> In order to help students to keep track of their progress toward course objectives, the instructor for this class will provide a Midterm Progress Report through each student's WebWorld account. Midterm grades will not be reported on the students' transcript; nor will they be calculated in the cumulative GPA. They simply give students an idea of where they stand. Students earning below a C at the midway point should schedule a meeting with their instructor.

RECORDING OF CLASS LECTURES: Permission must be requested in writing & obtained from the instructor before recording of class lectures. If permission is granted, the recording may only be used by the student making the recording. Recordings may NOT be posted on any internet source without written permission of the instructor. Failure to adhere to the policy may result in removal from the course with a grade of F or other appropriate punishment.

Grades will be posted on D2L

Tentative agenda:

		Tentative agenda:	
Jan	16-	Martin Luther King Holiday	
Jan	18-	Introduction	
Jan	20-	Binary numbers and data representation - a review	
Jan	23-	Binary numbers – negative values	
Jan	25-	Fractions	
Jan	27-	Floating point	
Jan	30-	Logic gates	
Feb	1-	Logic levels - transistors	
Feb	3-	Switching functions (AND, OR, NOT, NAND, NOR)	
Feb	6-	Power consumption	
Feb	8-	Boolean algebra	
Feb	10-	Boolean algebra – properties/theorems	
		Homework Assignment # 1	
Feb	13-	Boolean algebra – De Morgan's law	
Feb	15-	Logic to gates – don't cares	
Feb	17-	Karnaugh maps - introduction	
F -l-	00	Homework Assignment # 2	
Feb Feb	20-	Sum of products/product of sums	
Feb Feb	22-	Karnaugh maps - examples	
Feb Feb	24- 27-	More Karnaugh maps - examples Don't cares	
Feb Mar	27- 1-		
Mar	3-	5 input Karnaugh map Test # 1	
Mar	3- 6-	Quine-McCluskey method	
Mar	0- 8-	Multiplexers, Decoders	
Mar	0- 10-	Introduction to Quartus VHDL - basics	
inai	10-	Homework Assignment # 3	
Mar	13-17		
Mar		VHDL - examples	
Mar		VHDL - Quartus	
Mar	24-	Timing - Glitches	
Mar	27-	Project example	
Mar	29-	Sequential circuits - latches	
Mar	31-	Sequential circuits - latches	
		Homework Assignment # 4	
Apr	3-	D Flip-flops	
Apr	5-	VHDL - registers	
Apr	7-	Easter Holiday	
Apr	10-	Project example - register	
Apr	12-	Sequential logic design	
Apr	14-	Finite state machine	
_		Homework Assignment # 5	
Apr	17-	Finite state machine implementation – traffic light	
Apr	19-	Mealy and Moore Finite state machines	
Apr	21-	Simplifying a finite state machine	
Apr	24-	Digital building blocks	
Apr Apr	26-	Adders, Subtractors	
Apr May	28-	Comparators- ALU Shift registers, Counters	
May May	1- 3-	Shift registers, Counters Test # 2	
May May	3- 5-	Review	
Мау		Finals (Wednesday, 8:00 am)	
may	10-	i mais (weanesday, o.ov any	