CHEM 3405 – Instrumental Analysis Lecture Spring 2024 (MWF 10:00 – 10:50 am)

Instructor: Dr. J. SHAO

Phone, Office, Email: (940) 397-4463

Pierce Hall, 211

jianguo.shao@msutexas.edu

Office Hours: 1:00 - 4:00 pm (TW)

Textbook: Skoog, D. A.; Holler, F. J.; Crouch, S. R. *Principles of*

Instrumental Analysis, 7th Ed., Cengage Learning, **2018**.

Prerequisites: CHEM 3305 and concurrent enrollment of CHEM3405-21A

Grading Procedure:

4 One-hour Exams @ 100 pts each	400 (57.1%)
4 Pop Quizzes @ 25 pts each	100 (14.3%)
4 Paper Reviews @ 25 pts each	100 (14.3%)
Final ACS Test @ 100 pts	100 (14.3%)

Grading Scale:

Final grade will be given by the combination of lecture (60%) and lab (40%). Grade will be assigned as follows: $A: \ge 90\%$; B: 80 - 89%; C: 70 - 79%; D: 55 - 69% and F: < 55%.

General Education Statement:

Students in this course must demonstrate their competency in reading, writing, and some fundamental math skills through satisfactory completion of all assignments.

Course Content:

This course provides the basic knowledge of instrumental analysis. You will learn these techniques: Separation (GC, HPLC, SFC and CE), Spectroscopy (AAS, AES, UV-visible, FT-IR and MS) and electrochemistry (Potentiometry, Coulometry and Voltammetry). Four research papers related with four sections in this course will be assigned and reviewed by students using the knowledge learned in the course.

Academic Dishonesty:

Cheating on any exam, quiz or lab report will be regarded as academic dishonesty and will be subject to a final course grade of "F".

^{*} All students should refer to the MSU Student Handbook for university policies related student responsibilities, rights and activities

Tentative Lecture Schedule (changes may be made)

Date(s)	Chapter	Торіс	
Jan. 17 – 19	26	An Introduction to Chromatographic Separations	
Jan. 22	27	Gas Chromatography	
Jan. 24 – 29	28	High-Performance Liquid Chromatography	
Jan. 31 – Feb 02	30	Capillary Electrophoresis and Capillary Electrochromatography	
Feb. 05	TEST 1	Chapters 26 – 28, 30	
Feb. 07–14	6	An Introduction to Spectrometric Methods	
Feb. 16 – 21	7	Components of Optical Instruments	
Feb. 23 – 26	8	An Introduction to Optical Atomic Spectrometry	
Feb. 28 – Mar. 04	9	Atomic Absorption and Atomic Fluorescence Spectrometry	
Mar. 06 – 08	10	Atomic Emission Spectrometry	
<i>Mar.</i> 11 – 15	No Class	Spring Break	
Mar. 18	TEST 2	Chapters 6 - 10	
Mar. 20 – 22	13	An Introduction to UV-visible Molecular Absorption Spectrometry	
Mar. 25 – 27	14	Applications of UV-visible Molecular Absorption Spectrometry	
<i>Mar.</i> 28 – 29	No Class	Easter Break Holiday	
Apr. 01 – 03	15	Molecular Luminescence	
Apr. 05 – 08	16	An Introduction to Infrared Spectrometry	
Apr. 10 – 12	17	Application of Infrared Spectrometry	
Apr. 15	TEST 3	Chapters 13, 14, 15, 16, 17	
Apr. 17 – 22	20	Molecular Mass Spectrometry	
Apr. 24 – 26	22	Introduction to Electroanalytical Chemistry	
Apr. 29 – May 01	23 - 25	Potentiometry, Coulometry and Voltammetry	
May 03	TEST 4	Chapters 20, 22-25	
May 08	FINAL	10:30 am – 12:30 pm; Bolin-311	

Martin Luther King's Birthday Observed.	January 15, 2024
Classes begin.	January 16, 2024
Change of Schedule or Late Registration	January 16-19, 2024
Deadline for May graduates to file for graduation	February 12, 2024
Spring break	March 11-15, 2024
Holiday break	March 28-29, 2024
Last day of drop for "W", 4:00 pm	April 24, 2024
Last day of classes	May 03, 2024
Final examinations	May 06-09, 2024
Commencement	May 11, 2024

Student Resources:

https://msutexas.edu/academics/scienceandmath/student_resources.php

Campus-Carry Rules:

Senate Bill 11 passed by the 84th Texas Legislature allows licensed handgun holders to carry concealed handguns on campus, effective August 1, 2016. Area excluded from concealed carry are appropriately marked, in accordance with state law. For more information regarding campus carry, please refer to the University's webpage at http://mwsu.edu/campus-carry/rules-policies.