
3013-Algorithms

General Course Info

Days: TTh 12�30 p.m. - 1�50 p.m.

Location: BO 320

Semester: Monday January 10th - Friday April 29rd

Holidays:

Martin Luther King Jr. Day Monday January 17th

Spring Break : Monday March 14st - Friday March 19th

Last Day for “W”: Friday March 21st

Last Day of Class: Friday April 29th

Final Exam: Thursday May 5th @ 10�30am in BO 320

Resources

Here are some open source books for the course. I hope you guys appreciate the amount of effort it takes to

put material together and then put it on the internet for free.

Discrete Structures for Computer Science: Counting, Recursion, and Probability

Thanks To: Michiel Smid

Open Data Structures

Code available HERE

Thanks To: Pat Morin

Algorithms

Thanks To: Jeff Erickson

Wikipedia Collection of Data Structures

Assumed

This course assumes you know what array based data structures and list based data
structures are.

For example you should be able to write (from scratch) an array based stack and queue along with

a list based stack and queue. If you cannot, go study.
You should have a general understanding of recursive functions.

You should have a general understanding on graph structures more specifically be able to write and

traverse a basic Binary Search Tree (BST).

Basic OOP skills. Mainly encapsulation and implementation hiding, in other words packaging a data

structure with the methods to manipulate that data structure.

Note About This Courses

I will try to go over the list of topics (see below) in the order they are listed, and I have a path that I like to follow

when introducing these topics. However, I approach each course with the hopes that student interaction and

feedback will steer the course in a direction that may not be what was previously planned. This is stressful for

some of my more "organized" students, and I can appreciate their angst. So I always provide a study guide

https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2022.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2022.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2022.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/acadcal2022.pdf
https://msutexas.edu/registrar/_assets/files/pdfs/spring22finals.pdf
http://cglab.ca/~michiel/DiscreteStructures/
http://people.scs.carleton.ca/~michiel/
https://opendatastructures.org/ods-cpp.pdf
https://github.com/patmorin/ods
http://cglab.ca/~morin/
http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/
https://en.wikipedia.org/wiki/Book:Data_structures


before each exam to ensure everyone is on the same page with the topics I expect you to study. The study

guide could have actual test type questions, small programs to implement, or vocabulary and topics.

Algorithm Categories

Backtracking

Brute Force

Dynamic Programming

Greedy Algorithms

Recursion

Topics List

As I stated above, we will try to stay on task, but let me give you an example of why things can't always be

taught sequentially. There are always multiple ways to implement every data structure. For example there is a

data structure called a priority queue. It can be implemented in many ways, some better than others. Some of

these won't make sense right now, but you will get the idea. Here are a few:

�. Use an array, and order the items in the array using the "priority" value.

�. Use a singly linked list, and order the nodes using the "priority" value.

�. Use an array based binary tree, called a binary heap and using the "priority" value to order the heap.

�. Use a doubly circular linked list, and follow the algorithm known as a Fibonacci Heap to keep the

items in order.

So ultimately based on class input and questions that come up in discussion, I may jump around a bit so an

explanation will make sense. Remember though ... I make study guides for each test!!

Array Based vs List Based Structures

Array Based Implementations

Complexity

Introduction

Will be discussed with each data structure

Linked List Types

Singly Linked List

Doubly Linked List

Circular List

Stack, Queue, Priority Queue, Deque

Array Based Binary Search

Binary Tree's

Components

Array Based

Binary Heap (Array Based)

Fibonacci Heap (Possibly)

Binary Tree Implementation (List Based)

Trie

Balanced Tree's

AVL

Red Black (Possibly)

https://opendatastructures.org/ods-cpp/2_Array_Based_Lists.html
https://opendatastructures.org/ods-cpp/3_1_Singly_Linked_List.html
https://opendatastructures.org/ods-cpp/3_2_Doubly_Linked_List.html
https://www.geeksforgeeks.org/circular-linked-list/


Hash Tables

Graphs

Array Based and List Based Implementations

Basic Graph Algorithms

DFS (Depth-First Search)

BFS (Breadth-First Search)

Minimum Spanning Trees

Prim's Algorithm (Minimum Spanning Tree)

Kruskal's Algorithm (Minimum Spanning Tree)

Shortest Path

Dijkstra's Algorithm (One Way Shortest Path)

A-Star Algorithm (Possibly)

Sorting:

O(n^2)

Bubble Sort

Selection Sort

Insertion Sort

O(n lg n)

Merge Sort

Quick Sort

Other

Counting Sort

Radix Sort

Resources

http://opendatastructures.org/ods-cpp/

https://github.com/ippeb/ACM-ICPC

Grading

Categories Grade

Exams (3) 40% A 89-100

Programs (3-5)1 & Assignments 30% B 79-88

Final2 20% C 69-78

Github Portfolio 10% D 59-68

Project Presentations (time permitting)3 10% F below 59

1. Despite the low overall value of the programming portion of the course, ALL programs must be turned

in running to pass the course. They don't have to be necessarily correct, but they must run and they

need to at least approach the solution (a "Hello World" program will not work).

2. Plane ticket prices, events like weddings, or trips out of the country are not valid excuses for missing

the final exam at its scheduled time. I will not make accommodations for anything other than an issue

https://opendatastructures.org/ods-cpp/5_Hash_Tables.html
http://jeffe.cs.illinois.edu/teaching/algorithms/book/05-graphs.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/06-dfs.pdf
https://opendatastructures.org/ods-cpp/12_3_Graph_Traversal.html
http://jeffe.cs.illinois.edu/teaching/algorithms/book/07-mst.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/book/08-sssp.pdf


vetted by the dean of students.

3. The 10% for project presentations will be taken from Programs & Assignments if we have time to do

presentations.

Academic Misconduct Policy & Procedures

Cheating, collusion, and plagiarism (the act of using source material of other persons, either published or

unpublished, without following the accepted techniques of crediting, or the submission for credit of work not

the individual̓s to whom credit is given . The Department of Computer Science has adopted the following policy

related to cheating (academic misconduct). The policy will be applied to all instances of cheating on

assignments and exams as determined by the instructor of the course. (See below for link to MSU definitions.)

1st instance of cheating in a course: The student will be assigned a non-replaceable grade of zero for the

assignment, project or exam. If the resulting grade does not result in a letter grade reduction, the student

will receive a one letter grade reduction in course.

2nd instance of cheating in a course: The student will receive a grade of F in course & immediately be

removed from course.

All instances of cheating will be reported to the Department Chair and, in the case of graduate students,

to the Department Graduate Coordinator.

Note: Letting a student look at your work is collusion and is academic misconduct!

See Also: MSU Student Handbook: Appendix E: Academic Misconduct Policy & Procedures

https://msutexas.edu/student-life/_assets/files/handbook.pdf.


