

Course Syllabus: Image Analysis
College of Health Sciences & Human Services
RADS 4002
Spring 2026
Revised January 2026

Instructor: Debra Wynne, MSRS, RT(R)

Office: Centennial 430G

Office phone: 940-397-4608

Fax: 940-397-4845

Email: debra.wynne@msutexas.edu

Course Description:

This course will focus on the in-depth analysis of radiographic images to include, but not be limited to positioning, anatomy & physiology, and other quality factors.

Course Objectives:

Upon completion of this course the student will be able to:

- Identify normal anatomy for radiographic anatomy in the human body
- Judge accuracy of positioning on radiographic images
- Differentiate acceptable from unacceptable radiographic images

Course Resources:

*Required Textbook:

Martensen, K. M., (2020). Radiographic Analysis. (6th ed.) Elsevier Inc., St Louis, Mo.
ISBN 978-0-323-52281-6

Current prices for course resources can be found through the [MSU Bookstore](#).

Additional Resources:

**It is recommended that students download Google Chrome (a free download through Google) or Mozilla Firefox and use one of those as the default browser for ALL D2L courses. This appears to eliminate 99% of technical issues often encountered with Internet Explorer, Apple Safari, etc.*

**Students MUST have reliable computer and internet access.*

Communication with the Instructor:

Communication will be through the student's Midwestern State University email account. An email account is created for every MSU student. If you have not accessed this account yet, please do so by logging into the Portal and clicking the student email account icon located in the Portal.

The instructor will respond or at least acknowledge email messages from students within a maximum of five (5) business days when MSU is in session. Beyond standard university holidays and breaks, the instructor will notify students of any extended periods of time when email contact is not practical (professional meetings, etc.).

***When emailing the instructor, please include your full name, course and section number, and a thorough explanation in your message. This will help expedite your request or needs.**

Students should also periodically check the 'News' section within D2L for course updates and other important information.

Class Meeting Date and Time:

Class meetings are Tuesday each week from 8:00am – 9:50am in CE 340. However, the student should be vigilant in logging into D2L. Regular checks will ensure messages from the instructor are received in a timely manner.

See the Course Schedule at the end of this syllabus for specific information about activities and due dates.

Student Responsibilities:

As a student enrolled in this course, you will be responsible for adhering to and meeting posted deadlines and due dates. All activities for this course are listed at the end of this syllabus.

Activities such as quizzes have expiration dates. Please take note that expiration dates for quizzes may differ from deadlines for assignments and activities.

Quizzes and assignments/activities are spaced out in a manner that will allow you ample time to complete them. Assignments/activities will be accepted on or before the posted due date and deadline. ***Late assignments will be accepted on a case-by-case basis.** If a student cannot complete a course activity by the indicated due date, the student must contact the course instructor immediately. If a student has emergency issues, then the student must contact the instructor as soon as possible (within a day or

two). Any activity not completed and submitted by the due date will be addressed on an individual basis.

***Students must use baccalaureate level writing skills including complete sentences, correct grammar, and proper punctuation. All assignments will be graded for accuracy, completeness, quality, spelling, grammar, and integrity.**

*All assignments will be submitted in a dropbox within D2L. All assignments will be completed in Times New Roman or Arial, 12 point font.

***All assignment submissions made by students in D2L are considered final submissions. It is the student's responsibility to ensure that the correct and complete file has been uploaded. *If a student submits an incorrect document, an incomplete draft, or any unintended version, the assignment will be graded as submitted. Students are strongly encouraged to double-check their upload before finalizing the submission.**

***Additionally, Apple file formats such as .pages or Keynote files will not be accepted. *All submissions must be uploaded in Microsoft Office formats—such as .doc, .docx, .ppt, or .xlsx—or as otherwise specified in the assignment instructions.**

See the course calendar for the specific due date.

Course Behavior:

Attendance is mandatory. Excessive unexcused absences will result in a referral to the Dean of the College of Health Sciences and Human Services, and may result in your being dropped from the Program. Excessive unexcused absences are defined as: three (3) absences from lecture without prior approval from instructor or medical reasons (doctor's note will be required). If a student is more than 10 mins late to class they will be considered tardy. Three (3) tardies will count as an absence.

All students will treat others with respect in this course.

Mental Health

We all experience stressful and difficult events as a normal part of life. As your instructor, I believe your mental health is an important part of your academic success. Success in this course depends heavily on your personal health and well-being. You should recognize that stress is an expected part of the college experience, and it often can be compounded by unexpected setbacks or life changes outside the classroom. I strongly encourage you to reframe challenges as unavoidable pathways to success. Reflect on your role in taking care of yourself throughout the term before the demands of exams and projects reach their peak. Please feel free to reach out to me about any

difficulty you may be having that may affect your performance in this course as soon as it occurs and before it becomes unmanageable. In addition to your academic advisor and me, I strongly encourage you to contact the many other support services on campus that stand ready to assist you.

- Counseling Center – call 940-397-4618 to schedule an appointment
- [TAO](#) – a multilevel online therapy tool
- [Self-help apps](#) – MSU has a list available
- Mental Health [Resources](#)
- More [online resources](#)

Methodology/Teaching Strategies:

Independent reading assignments, D2L open-book module tests, directed questioning, and a comprehensive final exam.

Evaluation Method:

Percentage Distribution	Value
Participation	15%
Module Exams	20%
Hot Seats	40%
Final Exam	25%

Grading Scale:

Grade	Range
A	89.45-100
B	79.45-89.44
C	69.45-79.44
D	59.45-69.44
F	59.44 or below

***The last opportunity to drop this course with a grade of “W” is 4:00pm April 29, 2026.** Please refer to the Undergraduate Bulletin for details about receiving a grade of “Incomplete” in a course. In an emergency or extenuating circumstance, a student may request a grade of “Incomplete” in a course before grades are submitted.

If the instructor grants the “Incomplete,” the student has until thirty (30) days after the beginning of the next long semester to complete the course requirements. If the student does not complete the course requirements within the deadline, the grade of “Incomplete” will automatically convert into a grade of “F.”

Final Course Grade:

A final course score of 70% is required to pass this course. Letter grades of “D” or “F” cannot be used for graduation and will require the course be repeated according to the current radiology program policies.

Course Modules:

Module 1: Guidelines for Image Analysis
(Chapter 1)
Image Analysis of the Chest & Abdomen

	(Chapter 3)
Module 2:	Image Analysis of the Upper Extremity & Shoulder
	(Chapters 4-5) AND
	Image Analysis of the Sternum & Ribs
	(Chapter 10)
	Image Analysis of the Lower Extremity
	(Chapter 6) AND
	Image Analysis of the Pelvis and Hip
	(Chapter 7)
Module 3:	Image Analysis of the Cervical & Thoracic Vertebrae
	(Chapter 8) AND
	Image Analysis of the Lumbar Vertebrae, Sacrum, & Coccyx
	(Chapter 9)
Module 4:	Image Analysis of the Cranium
	(Chapter 11)

Disability Support Services:

In accordance with Section 504 of the Federal Rehabilitation Act of 1973 and the Americans with Disabilities Act of 1990, Midwestern State University endeavors to make reasonable adjustments in its policies, practices, services, and facilities to ensure equal opportunity for qualified persons with disabilities to participate in all educational programs and activities.

The Office of Disability Support Services (DSS) provides information and assistance, arranges accommodations, and serves as a liaison for students, instructors, and staff. The DSS has assistance devices such as books on tape, recorders, and adaptive software which can be loaned to qualified individuals. A student/employee who seeks accommodations on the basis of disability must register with the Office of Disability Support Services in the Clark Student Center Room 168 or call 940-397-4140 for more information. Documentation of disability from a competent professional is required.

Individuals with grievances related to discrimination or lack of accommodation on the basis of a disability are encouraged to resolve the problem directly with the area involved. If the matter remains unresolved, advice and/or assistance will be provided by the Office of Disability Services for resolution. The grievance procedure may be found in the Student Handbook and Activities Calendar.

The ADA Coordinator may be contacted at (940) 397.4140, or 3410 Taft Blvd., Clark Student Center Room 168.

Conduct/Honesty/Honor System:

This course adheres to the MSU Code of Conduct. In particular, academic dishonesty, however small, creates a breach in academic integrity. A student's participation in this course comes with the expectation that his/her work will be completed in full observance

of the MSU Code of Student Conduct. A student should consult the Student Handbook for answers to any questions about the code.

Students are encouraged to take full advantage of many resources available including Internet sites, handouts, other textbooks & journals, faculty, and peers. This interactive collegial learning environment is conducive to life-long learning.

Specific components of this course are designed to represent the efforts of each student individually and are NOT to be shared. These components include the written assignment submitted for a grade. Submitting someone else's work as your own or improperly cited work constitutes plagiarism. Please see the Midwestern State University Catalog for further discussion of plagiarism. Plagiarism will constitute in an F for the course and the student will be referred to administration for further action. When students submit their efforts for grading, they are attesting they abided by this rule.

***Quizzes and exams are not to be copied in any form or shared in any form.
Students caught engaging in such activity will receive an F for the course and be referred to University administration for dismissal.***

Cheating includes, but is not limited to: (1) use of any unauthorized assistance in taking quizzes, tests, or examinations; (2) dependence upon the aid of sources beyond those authorized by the instructor in writing papers, preparing reports, solving problems, or completing other assignments; or (3) the acquisition of tests or other academic materials belonging to the university faculty or staff without permission.

Plagiarism includes, but is not limited to: the use of, by paraphrase or direct quotation without correct citation in the text and on the reference list, the published or unpublished works of another person. Students may not submit papers and assignments that they have previously submitted for this or other courses. The use of materials generated by agencies engaged in "selling" term papers is also plagiarism. Students are encouraged to review the tutorials and suggested websites for more information about plagiarism.

****Artificial Intelligence (AI) Usage Policy***

In this course, the use of Generative AI tools (such as ChatGPT, Claude, Gemini, etc.) is permitted with specific limitations to ensure academic integrity and the development of critical research skills.

Research & Sourcing: You may use AI tools for preliminary research and topic exploration. However, to ensure the validity and scholarly weight of your work, at least 50% of the sources cited in any assignment must be retrieved directly from the MSU Moffett Library online databases.

Writing & Content: The use of AI in the writing process is strictly limited to spelling and grammar correction. AI tools are not permitted to generate text, arguments, analysis, or the bulk content of any assignment, including research papers, posters, and discussion board posts.

Verification: To maintain the integrity of your research, you must be prepared to provide PDF copies of all sources used upon request.

Consequences: Failure to adhere to these guidelines will be treated as a violation of academic integrity. A violation will result in a grade of zero for the assignment. Egregious cases of academic dishonesty involving AI may result in a failing grade (F) for the course.

D2L Sign-off in course assignment:

By submitting this assignment, I verify the following:

1. **Library Resources:** At least 50% of my sources are from the MSU Moffett Library databases.
2. **Original Work:** Any use of AI was limited to background research or spelling/grammar checking. AI did not write this assignment for me.
3. **Source Verification:** I have saved PDF copies of all my sources and can submit them if asked by the professor.
4. **Consequences:** I understand that violating these rules will result in a zero on the assignment or a failing grade in the course.

*By enrolling in this course, the student expressly grants MSU a limited right in all intellectual property created by the student for the purpose of this course. The limited right shall include but shall not be limited to the right to reproduce the students work product in order to verify originality and authenticity, and for educational purposes.

Campus Carry:

Effective August 1, 2016, the Campus Carry law (Senate Bill 11) allows those licensed individuals to carry a concealed handgun in buildings on public university campuses, except in locations the University establishes as prohibited. The new Constitutional Carry law does not change this process. Concealed carry still requires a License to Carry permit, and openly carrying handguns is not allowed on college campuses. For more information, visit [Campus Carry](#).

Participation in Radiologic Sciences laboratory classes often require students to wear scrubs which may make concealed carry of a firearm difficult if not impossible. In addition, students are often required to palpate other students while simulating medical

examinations or procedures. This required physical contact may also make concealment of a firearm difficult. While concealed carry is not prohibited in any Radiologic Sciences laboratory, students are reminded that intentional display of a firearm may result in criminal and/or civil penalties and unintentional display of a firearm is a violation of university policies and may result in disciplinary actions up to and including expulsion from the program and university. Students should factor the above in their decision as to whether or not to conceal carry in Radiologic Sciences laboratories.

Active Shooter:

The safety and security of our campus is the responsibility of everyone in our community. Each of us has an obligation to be prepared to appropriately respond to threats to our campus, such as an active aggressor. Please review the information provided by MSU Police Department regarding the options and strategies we can all use to stay safe during difficult situations. For more information, visit [Safety/Emergency Procedures](#). Students are encouraged to watch the video entitled [“Run, Hide, Fight.”](#)

Administrative Process:

Unresolved issues related to this course should be first addressed between the student and the course instructor. If there is no resolution, students must follow this sequence:

1. Interim Department Chair: Dr. Lynette Watts (940) 397.4833
2. College Dean: Dr. Jeff Killion (940) 397.4594
3. Dean of Students: Matthew Park (940) 397.7500

Reading Assignments for RADS 4002

Module 1	
Chapter 1: Guidelines for Image Analysis	Pgs 1-16
Chapter 3: Image Analysis of the Chest and Abdomen	Pgs 82-158
Chapter 10: Image Analysis of the Bony Thorax	Pgs 543-560

Objectives:

- State the characteristics of an optimal projection
- Properly display projections of all body structures
- State how the patient is associated with the projections and explain what to do if there is a mis-association
- Discuss how to mark projections accurately and explain the procedure to be followed if a projection has been mismarked or the marker is only faintly seen
- Discuss why good collimation practices are necessary and list the guidelines to follow to ensure good collimation
- Describe how positioning of anatomic structures in reference to the central ray (CR) and image receptor (IR) affects how they are visualized on the resulting projection
- State how similarly appearing structures can be identified on projections
- Determine the amount of patient or CR adjustment required when poorly positioned projections are obtained
- Discuss the factors that affect the spatial resolution in a projection
- Describe the radiation projection practices that are followed to limit patient and personnel dose
- Identify the required anatomy on all chest and abdominal projections
- Describe how to position the patient, image receptor (IR), and central ray (CR) properly for adult and pediatric chest and abdominal projections
- State the technical data used in chest and abdominal projections
- List the image analysis guidelines for accurately positioned adult and pediatric chest and abdominal projections
- State how to reposition the patient when chest and abdominal projections with poor positioning are produced
- Discuss how to determine the amount of patient or CR adjustment required to improve poor positioning on chest and abdominal projections
- State how the patient and CR are positioned to demonstrate air and fluid levels best within the pleural cavity. Explain how this detection is affected on an AP-PA chest projection if the patient is placed in a supine or partial upright position
- State the purpose and proper location of the internal devices, tubes, and catheters demonstrated on adult and pediatric AP chest and abdominal projections
- Explain why a 72-inch source-image receptor distance (SID) is routinely used for chest projections
- List the chest dimensions that expand when the patient inhales and the conditions that prevent full lung expansion
- Describe scoliosis, and identify a chest projection of a patient with this condition
- Describe methods of identifying the right and left hemidiaphragms on lateral chest projections
- Explain the location of the liver and discuss how its location affects the height of the right hemidiaphragm
- Discuss how the patient is positioned for a lateral decubitus chest projection to rule out pneumothorax and pleural effusion
- Explain how neonates' lungs develop and change as they grow and how CR centering is adjusted because of these changes
- Describe the location of the psoas muscles and kidneys
- Discuss how technique is adjusted for chest and abdomen projections of patients with additive and destructive conditions. Explain why this adjustment is required
- Explain why a patient is positioned in the upright or lateral decubitus position for at least 10-20 minutes before the abdominal projection is taken
- Describe why it is necessary to center differently for female and male patients when positioning for an AP abdominal projection
- State why it is necessary for the diaphragm to be included in all upright and lateral decubitus abdominal projections
- Identify the required anatomy of the bony thorax projections
- Describe how to properly position the patient, image receptor, and central ray on the bony thorax projections
- List the image analysis requirements for the bony thorax projections with accurate positioning and state how to reposition the patient when less than optimal projections are produced
- Describe how the patient is positioned to achieve homogeneous density on posteroanterior (PA) oblique sternal projections
- Explain why a 30-inch source-image receptor distance (SID) is used on PA oblique sternal projections
- Define costal breathing, and discuss the advantages of using it for PA oblique sternal projections
- Describe how thoracic thickness affects how far the sternum is positioned from the vertebral column when the patient is rotated
- List ways of reducing the amount of scatter radiation that reaches the IR when the sternum is imaged in the lateral projection

- Discuss when it is appropriate to take an anteroposterior (AP) projection of the ribs rather than a PA projection and why the AP oblique projection is preferred over the PA oblique projection when the axillary ribs are imaged

Module 2	
Chapter 4: Image Analysis of the Upper Extremity	Pgs 159-263
Chapter 5: Image Analysis of the Shoulder	Pgs 264-312
Chapter 6: Image Analysis of the Lower Extremity	Pgs 313-444
Chapter 7: Image Analysis of the Hip & Pelvis	Pgs 445-483

Objectives:

- Identify the required anatomy on upper extremity projections
- Describe how to position the patient, image receptor (IR), and central ray (CR) on upper extremity projections
- List the image analysis guidelines for upper extremity projections with accurate positioning
- State how to reposition the patient properly when upper extremity projections with poor positioning are produced
- Discuss how to determine the amount of patient or CR adjustment required to improve upper extremity projections with poor positioning
- State the kilovoltage (kV) that is routinely used for upper extremity projections, and describe which anatomic structures will be visible when the correct technical factors are used
- List the soft tissue structures that are of interest on upper extremity projections. State where they are located and describe why their visualization is important
- Explain how wrist and elbow rotations affect the position of the radial and ulnar styloids
- Discuss how a patient with large, muscular, or thick proximal forearms should be positioned for good posteroanterior (PA) and lateral wrist projections to be obtained
- State the carpal bone changes that occur when the wrist is extended, deviated, or ulnar-and radial-deviated in the PA and lateral projections
- Describe how the positioning procedure is adjusted if wrist projections are ordered with a request that more than one-fourth of the distal forearm be included
- Explain how and why the CR is adjusted for the PA ulnar-deviated scaphoid projection if a proximal or distal scaphoid fracture is in question and if a patient cannot adequately ulnar-flex
- List palpable structures used to identify the location of the elbow and glenohumeral joints
- Explain how the patient is positioned if only one joint can be placed in its true position for AP and lateral forearm and humeral projections
- Discuss how hand-and wrist-positioning will affect visualization of the radial tuberosity on lateral elbow projections
- State why the humerus is never rotated if a humeral fracture is suspected
- Identify the required anatomy on shoulder, clavicular, acromioclavicular (AC) joint, and scapular projections
- Describe how to properly position the patient, image receptor (IR), and central ray (CR) for projections of the shoulder, clavicle, AC joint, and scapula
- List the image analysis guidelines and the related positioning procedure for projections of the shoulder, clavicle, AC joint, and scapula
- State how to properly reposition the patient when shoulder, clavicle, AC joint, and scapular projections show poor positioning
- State the technical factors routinely used for shoulder, clavicular, AC joint, and scapular projections and describe which anatomic structures are visible when the correct technique factors are used
- State where the humerus is positioned if a shoulder dislocation is demonstrated on the AP and PA oblique (scapular Y) shoulder projections
- Discuss how the visualization of the proximal humerus changes as the humeral epicondyles are placed at different angles to the IR
- Explain how the scapula moves when the humerus is abducted
- List the anatomic structures that form the Y on a PA oblique (scapular Y) shoulder projection
- State how the lateral and medial borders of the scapula can be identified
- Discuss why non-weight-bearing and weight-bearing projections are required when AC joints are imaged
- Describe how the shoulder is retracted to obtain an AP projection of the scapula
- Describe the effect of humeral abduction on the degree of patient obliquity needed to position the scapula in a lateral projection

Module 3

Chapter 8: Image Analysis of the Cervical & Thoracic Vertebrae	Pgs 484-517
Chapter 9: Image Analysis of the Lumbar Vertebrae, Sacrum, & Coccyx	Pgs 518-542

Objectives:

1. Identify the required anatomy on cervical and thoracic vertebral projections.
2. Describe how to position the patient, image receptor (IR), and central ray (CR) properly for cervical and thoracic vertebral projections.
3. List the image analysis guidelines for cervical and thoracic vertebral projections with accurate positioning.
4. State how to reposition the patient properly when cervical and thoracic vertebral projections with poor positioning are produced.
5. Discuss how to determine the amount of patient or CR adjustment required to improve cervical and thoracic vertebral projections with poor positioning.
6. State the technical factors routinely used for cervical and thoracic vertebral projections, and describe which anatomic structures are demonstrated when the correct technique factors are used.
7. Describe how the upper and lower cervical vertebrae can move simultaneously and independently.
8. Explain how a patient with a suspected subluxation or fracture of the cervical vertebral column is positioned for cervical projections.
9. Discuss the curvature of the cervical vertebrae, and explain how the intervertebral disk spaces slant.
10. Describe why a 5-degree cephalic CR angulation is often required for an AP open-mouth projection of the atlas and axis.
11. State how the relationship between the dens and atlas's lateral masses changes when the head is rotated.
12. Describe how the prevertebral fat stripe is used as a diagnostic tool.
13. Explain how the patient is positioned to demonstrate anteroposterior (AP) cervical mobility.
14. Discuss the procedures that are taken if C7 is not demonstrated on a lateral cervical projection.
15. Describe the positioning and analysis differences that exist between AP and posteroanterior (PA) oblique cervical projections.
16. Discuss when it is necessary to achieve a lateral cervicothoracic projection of the cervical vertebrae.
17. List two methods used to obtain uniform image density on an AP thoracic vertebral projections.
18. Discuss how scoliosis is differentiated from rotation on AP and lateral thoracic projections.
19. Explain the breathing methods used to demonstrate the thoracic vertebrae on a lateral thoracic projection.
20. Describe two methods that are used to offset the sagging of the lower thoracic column that results when the patient is in a lateral projection.
21. Identify the required anatomy on lumbar, sacral, and coccygeal projections.
22. Describe how to position the patient, image receptor (IR), and central ray (CR) properly for lumbar, sacral, and coccygeal projections.
23. State how to mark and display lumbar, sacral, and coccygeal projections properly.
24. List the typical artifacts that are found on lumbar, sacral, and coccygeal projections properly.
25. List the image analysis guidelines for lumbar, sacral, and coccygeal projections with accurate positioning.
26. State how to reposition the patient properly when lumbar, sacral, and coccygeal projections with poor positioning are produced.
27. Discuss how to determine the amount of patient or CR adjustment required to improve lumbar, sacral, and coccygeal projections with poor positioning.
28. State the curvature of the lumbar vertebrae, sacrum, and coccyx.
29. State which zygapophyseal joints are demonstrated when posterior and anterior oblique lumbar projections are produced.
30. List the anatomic structures that make up the parts of the "Scottie dogs" demonstrated on an oblique lumbar image with accurate positioning.
31. Explain which procedures are used to produce lateral lumbar, L5-S1 spot, sacral, and coccygeal projections with the least amount of scatter radiation reaching the IR.
32. State two methods of positioning the long axis of the lumbar column parallel with the IR for a lateral lumbar projection.
33. Describe how the patient is positioned to demonstrate anteroposterior (AP) mobility of the lumbar vertebral column.
34. State why the patient is instructed to empty the bladder and colon before an AP sacral or coccygeal projection is taken.

Module 4

Chapter 11: Image Analysis of the Cranium

Pgs 561-588

Objectives:

1. Identify the required anatomy on cranial, facial bone, nasal bones, mandible, and sinus projections.
2. Describe how to position the patient, image receptor (IR), and central ray (CR) properly on cranial, facial bone, nasal bones, mandible, and sinus projections.
3. List the analysis guidelines for cranial, facial bone, nasal bones, mandible, and sinus projections with accurate positioning.
4. State how to reposition the patient properly when cranial, facial bone, nasal bones, mandible, and sinus projections with poor positioning are produced.
5. Discuss how to determine the amount of patient or CR adjustment required to improve cranial, facial bone, nasal bones, mandible, and sinus projections with poor positioning.
6. State the kilovoltage routinely used for cranial, facial bone, nasal bones, mandible, and sinus projections, and describe which anatomic structures are visible when the correct technique factors are used.
7. State how the CR is adjusted to obtain accurate cranial positioning when the patient has a suspected cervical injury or is unable to adequately align the head with the IR.
8. Define and state the common abbreviations used for the cranial positioning lines.
9. Discuss why the parietoacanthial projection (Waters method) is taken with the mouth open.
10. Explain how the patient and CR are positioned to demonstrate accurate air-fluid levels in the sinus cavities.

Tentative Spring Course Schedule
***Activities and dates are subject to change**

Date	Activity
Jan 20	Ch1 & 3
Jan 27	Continue with Ch 3
Feb 3	Continue with Ch 10 & Ch 3
Feb 10	Hot Seat 1; Sherpath, Module 1 Exam due 11:59pm
Feb 17	Ch 4
Feb 24	Continue with Ch 4 & Ch 5
Mar 3	Ch 6
Mar 9-14	SPRING BREAK
Mar 17	Continue with Ch 6
Mar 24	Ch 7
Mar 31	Hot Seat 2; Sherpath, Module 2 Exam due 11:59pm
April 7	Ch 8
April 14	Continue with Ch 8 & Start Ch 9
April 21	Ch 9
April 28	Hot Seat 3; Sherpath, Module 3 Exam due 11:59pm
May 5	Ch 11
May 12	Final Exam (online)